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Abstract. The study of the solution of the linearized Boltzmann equation has a very long history arising from the classic
work by Chapman and Cowling. For small departures from a Maxwellian, the nonlinear Boltzmann equation can be linearized
and the transport coefficients calculated with the Chapman-Enskog approach. This procedure leads to a set of linear integral
equations which are generally solved with the expansion of the departure from Maxwellian in Sonine polynomials. The method
has been used successfully for many decades to compare experimental transport data in atomic gases with theory generally
carried out for realistic atom-atom differential cross sections. There are alternate pseudospectral methods which involve the
discretization of the distribution function on a discrete grid. This paper considers a pseudospectral method of solution of
the linearized hard sphere Boltzmann equation for the viscosity in a simple gas. The relaxation of a small departure from a
Maxwellian is also considered for the linear test particle problem with unit mass ratio which is compared with the relaxation
for the linearized one component Boltzmann equation.
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INTRODUCTION

The Chapman-Enskog approach to the calculation of transport coefficients in a simple gas is very well known and
described in standard texts [1]. A small departure from a Maxwellian is assumed to occur owing to small velocity
and/or temperature gradients. The transport coefficients are then defined by the linear phenomenological laws. With
this approach, the viscosity of a simple gas is given by

εp =
16
√

2
15

∫ ∞

0
e−x2

x4B(x)dx, (1)

in reduced units as defined elsewhere [2, 3, 4]. The function B(x) is the solution of the linear integral equation
∫ ∞

0
e−x2

x2K2(x,y)B(x)]dx−Z(y)B(y) =−y2, (2)

where the symmetric kernel, K2(x,y), for x < y is given by

K2(x,y) = −2[A(x,y)+C(x,y)Ψ(x)]/(x4y4), (3)

A(x,y) =
2
35

x7−3x3 +18x− y2(
2

15
x5−3x),

C(x,y) = −6x4 +15x2−18+ y2(2x2−3)

and Ψ(x) =
√

πex2
erf(x)/2 and erf(x) is the error function. The kernel K2(x,y) is the ` = 2 component of the expansion

of the anisotropic kernel in Legendre polynomials, that is, K(x,y,µ) = ∑` K`(x,y)P̀ (µ) and µ is the cosine of the angle
between the velocities x and y [2, 3, 4, 5]. It is important to note that function B(x) in this paper corresponds to x2b(x)
in the papers by Siewert [2] and Loyalka et al [3]. In Eq. (2), Z(x) is the collision frequency defined by

Z(x) =
√

π
2

(2x+
1
x
)erf(x)+ e−x2

. (4)



In recent years, there has been a renewed interest [2, 3, 6] in the solution of the integral equations for the hard sphere
potential. The objectives are directed towards the development of accurate and efficient numerical algorithms for the
solution of the Boltzmann equation. Loyalka et al [3] have provided extremely accurate solutions (up to 30 significant
figures) for the heat conductivity and viscosity coefficients by employing algebraic methods. Their results serve as
benchmarks against which other methods can be compared. Siewert [2] used a spline method for the same problem
and obtained similar although less accurate results. The importance of these endeavors in rarefied gas dynamics was
discussed in [7].

Shizgal [8] introduced a pseudospectral method based on the speed quadrature defined by the Maxwellian weight
function, w(x) = x2e−x2

, which has been used to determine the eigenvalue spectrum of both the linearized operator
and the linear operator for binary mixtures [5, 9]. The approach in this paper is based on the observation that the
integral for the dimensionless viscosity converges very rapidly with respect to the number, N, of speed quadrature
points and weights [8]. With a spline fit of B(x) in Table 5 of [3] which has 44 data for x ∈ [0,6], I find that εp =
0.44852, 0.44902, 0.4490280 and 0.4490278 for, N = 2, 4, 6 and 8, respectively. This suggests that a solution based on
the speed quadrature points should converge quickly. The integral with the spline parameters with the 44 data points is
εp = 0.4490278. A Simpson’s rule integration with N = 10, 20 and 30, gives εp = 0.44278, 0.449032 and 0.4490278,
respectively. The relaxation to equilibrium of the one component hard-sphere gaseous system [8, 10] is also studied.
This is important in the development of discretization methods for the description of the relaxation to equilibrium for
the nonlinear Boltzmann equation [10, 11]. The relaxation behavior for the test particle problem for unit mass ratio
with the linear Boltzmann equation is also studied and compared with the results for the one component system.

SOLUTION OF THE BOLTZMANN EQUATION FOR VISCOSITY WITH SPEED
QUADRATURE POINTS

The solution of the integral equation, Eq. (2), is often based on the evaluation of the distribution function on a grid of
points {zi} defined for a quadrature of the form

∫ ∞

0
w(x) f (x)dx≈

N

∑
i=1

Wiw(zi) f (zi), (5)

where {Wi} are the set of associated weights, w(x) is a weight function and N is the number of quadrature points.
Owing to the explicit occurrence of w(x) = e−x2

x2 in Eqs. (1) and (2), a quadrature based on this weight function
would appear to be a good choice and also in view of the rapid convergence of the integral in Eq. (1) noted in the
preceeding section. Moreover, the quadrature points and weights {xi} and {wi} for this weight function can be scaled,
that is, Wi = swiex2

i /x2
i and zi = sxi so that we have the approximation

∫ ∞
0 g(x)dx ≈ ∑i Wig(zi) as used in Eq. (5). A

possible concern with the solution of Eq. (2) is that the kernel K2(x,y) exhibits a cusp [2] at x = y; the derivative of
the kernel is not continuous at this point. It is useful to notice that the linear operator defined by the left-hand-side of
Eq. (2) does not have any zero eigenvalues [9] contrary to the properties of the corresponding kernels for ` = 0 and 1,
which have two zero eigenvalues and one zero eigenvalue, respectively.

With this quadrature procedure, a solution of the integral equation, Eq. (2), is obtained by the inversion of the set of
linear algebraic equations

N

∑
i=1

Wie−z2
i z2

i K2(zi,z j)B(zi)−Z(z j)B(z j) =−z2
j . (6)

The reduced viscosity is then given by

εp =
16
√

2
15

N

∑
i=1

Wie−z2
i z4

i B(zi). (7)

The convergence of the solution of the Boltzmann equation obtained in this way with the scaled speed quadrature
points is shown in Table 1 in comparison with the solution reported by Siewert [2]. The integrand of Eq. (1) for the
viscosity is shown in the table so that we can see that the major contribution to the integral is approximately in the
interval x ∈ [0.4,4.0]. The scaling of the speed points with the parameter s is thus important so as to compute the
solution in the range of x that contributes to the viscosity. With s = 5.0/xN , I get the convergence of the viscosity
versus the number of speed quadrature points, N, shown in Table 2. The converged results in Tables 1 and 2 are



TABLE 1. Solution of the Boltzmann equation for viscosity with speed quadrature points; x4e−x2
B(x); (−n) ≡

×10−n. The last two entries in the second column for x = 5.5 and 6.0 are taken from Loyalka et al (2007)

.

x Siewert 2002 N=20 N=30 N=40 N = 60 N=80

0.1 0.613418(-6) 0.515564(-6) 0.621236(-6) 0.612545(-6) 0.613398(-6) 0.613414(-6)
0.2 0.379213(-4) 0.385653(-4) 0.379120(-4) 0.379161(-4) 0.379207(-4) 0.379211(-4)
0.3 0.407752(-3) 0.406290(-3) 0.407632(-3) 0.407717(-3) 0.407745(-3) 0.407750(-3)
0.4 0.211391(-2) 0.211006(-2) 0.211338(-2) 0.211374(-2) 0.211387(-2) 0.211390(-2)
0.5 0.727435(-2) 0.726860(-2) 0.727258(-2) 0.727378(-2) 0.727424(-2) 0.727432(-2)
1.0 0.200043 0.199830 0.200000 0.200029 0.200040 0.200042
1.5 0.578299 0.577804 0.578200 0.578268 0.578293 0.578297
2.0 0.497222 0.496907 0.497159 0.497202 0.497219 0.497221
2.5 0.176668 0.176588 0.176651 0.176662 0.176666 0.176667
3.0 0.300107(-1) 0.300023(-1) 0.300086(-1) 0.300100(-1) 0.300105(-1) 0.300106(-1)
3.5 0.263181(-2) 0.263147(-2) 0.263168(-2) 0.263176(-2) 0.263180(-2) 0.263180(-2)
4.0 0.124651(-3) 0.124661(-3) 0.124647(-3) 0.124649(-3) 0.124650(-3) 0.124651(-3)
4.5 0.328137(-5) 0.328480(-5) 0.328135(-5) 0.328132(-5) 0.328135(-5) 0.328137(-5)
5.0 0.489457(-7) 0.488628(-7) 0.489893(-7) 0.489420(-7) 0.489467(-7) 0.489453(-7)
5.5 0.419346(-9) 0.423847(-9) 0.418882(-9) 0.418244(-9) 0.419188(-9) 0.419500(-9)
6.0 0.208417(-11) 0.209376(-11) 0.208552(-11) 0.208405(-11) 0.208450(-11) 0.208559(-11)

TABLE 2. Convergence of εp versus the number of speed quadrature
points s = 5.0/xN

N 20 30 40 60 80

εp 0.448816 0.448985 0.449014 0.449025 0.449027

in complete agreement with the previous results [2, 3] to the significant figures shown. Siewert [2] employed 301
“knots" with the Hermite cubic spline functions and a 4th order Gauss-Legendre quadrature to perform integrals over
subintervals. The final integral for the viscosity, Eq. (1), was computed with 100 Gauss-Legendre quadrature points
and Siewert [2] reports the value εp = 0.449027806. Sharipov and Bertoldo [4] solved the Boltzmann equation as a
two dimensional problem in two velocity coordinates and used 40 grid points in each velocity direction and 200 points
with a Simpson’s rule to evaluate εp to the same precision as in Table 2. In both papers [2, 4], the size of the matrices
involved is much greater than the N2 values in Table 2 and the convergence rates were not reported. The application of
the speed quadrature points and weights to this problem is very straightforward and the convergence is rapid as seen
from Tables 1 and 2. The eigenvalues and eigenfunctions of the operator defined by the left-hand-side of Eq. (2) which
are important for the relaxation of anistropic distributions [5]) were reported in a previous publication [9].

RELAXATION TO EQUILIBRIUM

The approach to equilibrium of a minor constituent in a background gas at equilibrium or of a single component gas
are fundamental problems in kinetic theory [10, 12, 13, 14] with important current applications to trapped cold gases
[15, 16]. I compare the relaxation behavior of the isotropic portion of the distribution function as determined with the
Wigner-Wilkins kernel k0(x,y) [17, 18] for the linear collision operator (for unit mass ratio) and the kernel K0(x,y)
for the one component gas. For the test-particle problem, there is only one zero eigenvalue corresponding to particle
conservation whereas for the one component gas there are two zero eigenvalues, one for particle conservation and the
other for energy conservation. For the test-particle case, detailed balance can be used to impose particle conservation
so that λ0 = 0 to machine accuracy. This can also be done for the one component gas, but then λ1 is not zero to
machine accuracy. If this eigenvalue is made zero to machine accuracy with the appropriate definition of Z(x) then λ0
is no longer exactly zero. The linear Boltzmann equation with unit mass ratio is considered in the next section. In the
last section, I consider the relaxation of a small perturbation from Maxwellian for a one component gas.



TABLE 3. T (t)/Tb for the Linear Boltzmann Equation
with Unit Mass Ratio; T (0)/Tb = 10

t/N 20 40 60 80 100

0.05 8.2695 8.2573 8.2559 8.2556 8.2555
0.10 6.9389 6.9203 6.9183 6.9179 6.9178
0.15 5.9017 5.8801 5.8779 5.8774 5.8773
0.20 5.0828 5.0603 5.0581 5.0577 5.0575
0.40 3.1169 3.0985 3.0969 3.0966 3.0965
0.60 2.1982 2.1854 2.1844 2.1842 2.1842
0.80 1.7194 1.7108 1.7102 1.7101 1.7101
1.00 1.4500 1.4443 1.4439 1.4438 1.4438
1.50 1.1559 1.1536 1.1535 1.1535 1.1535

Linear Boltzmann Equation; Unit Mass Ratio

The time dependent distribution, f (x, t), of a minor constituent dilutely dispersed in a second component at
equilibrium is given by the Boltzmann equation

d f (y, t)
dt

= 2
∫ ∞

0
xk0(x,y) f (x, t)dx−Z(y) f (y, t), (8)

where the kernel for unit mass ratio [18] is given by

k0(x,y) =
{ √

πerf(y)/x y < x√
πex2−y2

erf(x)/x y > x,
(9)

and the time scale t is in units of [Nbπd2
√

kTb/2m]−1 where Nb and Tb are the density and temperature, respectively,
of the background gas, d is the hard sphere diameter and m is the mass of the minor constituent. The kernel in Eq.
(9) is usually written in reduced energy whereas in this paper reduced speed is used. This is the reason for the factor
2x in Eq. (8) and 2y in Eq. (10) below. Since particle number is conserved, there is a single eigenvalue, λ0 = 0, of the
collision operator consistent with the definition of the collision frequency as

Z(x) = 2
∫ ∞

0
yk0(x,y)dy. (10)

With the appropriate quadrature, the BE is reduced to the set of ordinary differential equations, that is,

d fi(t)
dt

= 2
N

∑
j=1

Wjz jk0(z j,zi) f j(t)−Zi fi(t), (11)

where fi(t) ≡ f (zi, t) and Zi = 2∑N
k=1 Wkzkk0(zi,zk). The numerical evaluation of the collision frequency rather than

the use of Eq. (4) is very important so as to conserve particle number, that is λ0 = 0 to machine accuracy. Equation
(11) is integrated with a simple Euler scheme, that is,

fi(t +∆t) = fi(t)+∆t

[
2

N

∑
j=1

Wjz jk0(z j,zi) f j(t)−Zi fi(t)

]
. (12)

An initial Maxwellian at T (0) > Tb is chosen. I show the rapid convergence of the time dependent solution of this BE
with the speed quadrature method in Table 3 in terms of the temperature ratio T (t)/Tb where Tb is the temperature of
the background gas. The convergence is slower at the shortest times as the initial decay is controlled by the highest
(eigenvalue) modes. With increasing time, the better converged lower order modes dominate the solution and the
convergence improves. Although solutions of the Boltzmann equation for the hard sphere cross section have been
reported previously [17], the convergence properties have not been studied. Instead of the time dependent solution
obtained by a direct Euler integration of the discretized equations, the solution can be expresssed in terms of the
eigenvalues and eigenfunctions. It was demonstrated in a previous paper [9], that the calculation of the eigenfunctions



TABLE 4. Approach to the Eigenvalue Continuum Boundary at Z(0);
WKB limit [exp(4π/

√
23) = 13.74]; the λn are scaled by Z(0).

n Speed Quadrature (N = 80) Multi-Domain (N = 96) 1−λn
1−λn+1

1 0.81902 0.8190221
2 0.97973 0.9797339 5.526
3 0.99839 0.99838853 8.930
4 0.99988 0.99988132 12.58
5 0.99999 0.9999913460 13.58
6 1.0001 0.99999936318 13.71
7 0.999999958353 13.59
8 0.9999999926736 15.29

requires a very nonuniform grid owing to the rapid variations of the eigenfunctions near the origin in speed space,
especially to resolve the discrete eigenvalues near the continuum boundary. The grid employed for this calculation is
defined by the division of the semi-infinite interval into 12 sub-intervals with 8 Fejer quadrature points in each interval
except the last where a shifted Laguerre quadrature is used. The interval boundaries are chosen to approximately
coincide with the roots of the highest bound eigenfunction desired. The lower order eigenvalues calculated in this way
are shown in comparison with the eigenvalues obtained with speed quadrature points in Table 4. The accuracy of the
eigenvalues near to the continuum boundary is provided by the comparison with the asymptotic WKB result [9] as
shown in the 4th column of Table 4.

Linearized Boltzmann Equation

For a one component system, I choose an initial departure from Maxwellian, that is, f (x,0) = fmax(x)[1+φ(x,0)].
The time dependent relaxation of φ(x, t) is given by the linearized Boltzmann equation defined by

∂φ(y, t)
∂ t

=
∫ ∞

0
e−x2

x2K0(x,y)φ(x, t)dx−Z(y)φ(y, t). (13)

The symmetric kernel in this case is the ` = 0 component of the anisotropic kernel [1, 12, 13, 18] and is given by

K0(x,y) = 2
√

pi[Ψ(x)− (x3/3+ xy2)]/(xy) x < y. (14)

with t dimensionless as defined previously. The discretized form of Eq. (13) is

dφi(t)
dt

=
N

∑
j=1

Wje
−z2

j+z2
i

(
z j

zi

)2

K0(z j,zi)φ j(t)−Ziφi(t), (15)

where φi(t) ≡ φ(zi, t) and Zi is computed analogous to that shown after Eq. (11) or alternatively with
Zi = (2/z2

i )∑N
k=1 Wkz4

ke−z2
k K0(zi,zk) to ensure that energy conservation is obtained to machine accuracy. In this

way, one of the two zero eigenvalues is of the order of 10−15 but not both. The other eigenvalue is much larger of
the order of 10−5. The time dependence of φi(t) is calculated with an Euler integration of Eq. (15) analogous to Eq.
(11). Energy conservation is imposed with the previously defined collision frequency and the distribution function can
be renormalized at each time step. The evolution of the distribution function is shown in Fig. 1 on the left hand side
and of the perturbation on the right hand side. The initial distribution, f (x,0), exhibits a second peak at x = 4 arising
from the choice of φ(x,0) = 4000e−5(x−4)2

. The long time form of the perturbation is a linear combination of the two
eigenfunctions with zero eigenvalue, thus it is verified that limt→∞ φ(x, t)→ A+Bx2 which goes slightly negative for
x ≈ 0 and not visible with the scale chosen. The main peak of the distribution function moves to higher values of x
with increasing time so as to maintain a constant temperature. This behaviour is in sharp contrast to the relaxation
results in Table 3. A relaxation time for the approach to equilibrium can be defined with the relaxation data in Table
3. For the one component system the temperature is constant and higher order moments of the distribution could be
used to define a relaxation time.

This paper has demonstrated the utility of the speed quadratures for a pseudospectral solution of three different



Boltzmann equations. Further work is in progress to study the way the cusps in the kernels affect the convergence
of different numerical methods. A comparison will be made of the solution of the linearized Boltzmann equation
with corresponding nonlinear Boltzmann equation [10]. A comparison with a moment method based on the matrix
representation of the collision operator in the Sonine polynomial basis will also be carried out. Realistic quantum
differential cross sections will also be used. Further details will appear in forthcoming publications.

FIGURE 1. Distribution function f (x, t) = fmax(x)[1 + φ(x, t)]; successive reduced times are t = 0.02, 0.06, 0.2, 0.3 and 0.5;
φ(x,0) = 4000e−5(x−4)2

.
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